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Principle of Least Action in Contemporary Physics and Economics 

Yoshihiro Yamazaki 

Abstract 

     The principle of least action means that every object in the universe take the shortest 
course in its motion. For example, light and point mass will move on the straight line without 
refraction or external force. 
     This is, however, a very strange thing because moving objects in the nature often have 
no intentions. Even so, mathematical physics has been built taking a basis on this principle 
including relativity theories and quantum mechanics. 
     Contemporary macroeconomics also shares mathematical background with physics. 
Economics originally shed light on rational behavior of human beings. Human beings have 
their minds and calculate their actions. Because of this, mathematical formalization of 
economics is suitable for the principle of least action. 
     This paper summarizes logical correspondences between contemporary physics and 
economics. 
     Frank Plumpton Ramsey published a paper on optimal growth theory. John Maynard 
Keynes, who was the editor of the journal at the time, proposed use of principle of variations 
to Ramsey. In fact, this was the first paper which paraphrased principle of least action 
explicitly in economics. 
     Several years later, Keynes published his monumental book. It is probably true that 
Keynes was very conscious of Einstein’s works when he wrote the sentences. After all, 
Keynes’s book treated an economy under the real effect from money while Einstein thought 
about the motion of point mass under the relativistic effects. 
     Stochastic disturbance of the economy came to play a substantial role in economic 
growth around 1980. The effects from shocks sustain long and move the growth path into a 
new one. This image is very akin to Feynman’s path integral, where a particle takes every 
possible path at the same time. 

JEL classifications: B130, B410, C610. 

Keywords: principle of least action, Lagrangian format, Hamiltonian format, path integral, 
real business cycle model, dynamic stochastic general equilibrium model. 
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Introduction 

     The principle of least action means that every object in the universe take the shortest 
course in its motion. For example, light and point mass will move on the straight line without 
refraction or external force. 
     This is, however, a very strange thing because moving objects in the nature often have 
no intentions. Even so, mathematical physics has been built taking a basis on this principle 
including relativity theories and quantum mechanics. 
     Contemporary macroeconomics also shares mathematical background with physics. 
Economics originally shed light on rational behavior of human beings. Human beings have 
their minds and calculate their actions. Because of this, mathematical formalization of 
economics is suitable for the principle of least action. 
     This paper summarizes logical correspondences between contemporary physics and 
economics. 

1. Origin of Principle of Least Action

     Pierre-Louis Moreau de Maupertuis proposed principle of least action in his two papers1. 
In the first paper, he introduced the principle in the area of optics. Two years later, he 
published another paper where the principle was extended into all phenomena in the nature. 
     He intended to prove the existence of God who control the movements of particles in 
the world. He thought that there was God’s behavior of optimization behind the principle of 
least action. 
     Only a few months later of Mauperyuis’s first paper, Leonhard Euler published a book2. 
He calculated a parabola orbit of the object in appendix 2 of the book. The orbit is optimized 
following the equation ∫ds√v. He substituted to this the relations v=a+gx and ds=dx√(1+pp) 
which were reduced from the equation of motion dv=gdx into this. He got y=(2/g)√{C(a-
G+gx)} applying Euler equation of calculus of variations. 
     In the summer of 1755, Joseph-Louis Lagrange of age 19 sent a letter3 to Euler. It 
suggested an algebraic expression of principle of least action. 

  He introduced variation symbol δ and expressed the general principle of motion like 
this; 

1 Maupertuis (1744, 1766). 
2 Euler (1744). 
3 Lagrange (1760-61). 



2 
 

 
δ�𝑢𝑢𝑢𝑢𝑢𝑢 = 0 

(1). 

     We can separate the left-hand side of the equation (1) into two parts. 
 

�𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 + �𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 0 
(2) 

     The first term can be formalize using the relation u=ds/dt as follows; 
 

�𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 = (𝑋𝑋𝑋𝑋𝑋𝑋 + 𝑌𝑌𝑌𝑌𝑌𝑌 + 𝑍𝑍𝑍𝑍𝑍𝑍)
𝑑𝑑𝑑𝑑
𝑀𝑀

 
(3). 

     The second term can also be formalize using the relation ds=√(dx2+dy2+dz2) as 
follows; 
 

�𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = �𝑢𝑢 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑 +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑 +
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑�

− ��𝑑𝑑
𝑢𝑢𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿 + 𝑑𝑑
𝑢𝑢𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿 + 𝑑𝑑
𝑢𝑢𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿� 

(4). 

     When the equation (1) is held for any variations of x, y and z, we can obtain the three 
equations (5). These are the equations of motion of the particle M. 
 

𝑑𝑑
𝑢𝑢𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑

−
𝑋𝑋
𝑀𝑀
𝑑𝑑𝑑𝑑 = 0,𝑑𝑑

𝑢𝑢𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑

−
𝑌𝑌
𝑀𝑀
𝑑𝑑𝑑𝑑 = 0,𝑑𝑑

𝑢𝑢𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑

−
𝑍𝑍
𝑀𝑀
𝑑𝑑𝑑𝑑 = 0 

(5) 

     Lagrange made the principle of least action the only method for deducing any equation 
of motion. He accomplished that following the principle of variations. 
 

2. Lagrange and Hamilton Formats 

     When we apply Lagrangian method to Newtonian mechanics, we suppose a physical 
amount Lagrangian. 
 𝐿𝐿 = 𝐿𝐿(𝑞𝑞, 𝑞̇𝑞) = 𝑇𝑇(𝑞𝑞, 𝑞̇𝑞) − 𝑈𝑈(𝑞𝑞) (6) 

     Here T, U and q are kinetic energy, potential energy and generalized coordinate 
respectively. 
     From D’Alembert’s principle, we obtain the equation (7). 
 

��
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕(𝑞𝑞, 𝑞̇𝑞)
𝜕𝜕𝑞̇𝑞𝑘𝑘

−
𝜕𝜕𝜕𝜕(𝑞𝑞, 𝑞̇𝑞)
𝜕𝜕𝑞𝑞𝑘𝑘

� 𝛿𝛿𝑞𝑞𝑘𝑘
𝐾𝐾

𝑘𝑘=1

= 0 
(7) 

     Because the contents of the bracket must be zero independently, the equation (8) 
follows. 
 𝑑𝑑

𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕(𝑞𝑞, 𝑞̇𝑞)
𝜕𝜕𝑞̇𝑞𝑘𝑘

−
𝜕𝜕𝜕𝜕(𝑞𝑞, 𝑞̇𝑞)
𝜕𝜕𝑞𝑞𝑘𝑘

= 0 
(8) 

     This is Euler-Lagrange equation which we have already seen. 
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     Instead of using the concepts of energy, we shall suppose the amount called Lagrangian, 
an abstract function of coordinates, time differential of coordinates and time itself. Then we 
can define the principle of least action like this. A particle moves along the path q(t) through 
which the action like the equation (9) possesses the minimum value. 
 

𝑆𝑆 = � 𝐿𝐿(𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡𝐵𝐵

𝑡𝑡𝐴𝐴
 

(9) 

     This generalization of Lagrangian made the principle of least action applicable for 
broader areas including economics. 
     In our world, time has uniformity. We can suppose the physical amount that is 
independent from time. 
 dL

𝑑𝑑𝑑𝑑
=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑘𝑘

𝑑𝑑𝑞𝑞𝑘𝑘

𝑑𝑑𝑑𝑑
+
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞𝑘𝑘

𝑑𝑑𝑞̇𝑞𝑘𝑘

𝑑𝑑𝑑𝑑
�

𝐾𝐾

𝑘𝑘=1

= ��
𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞𝑘𝑘

� 𝑞̇𝑞𝑘𝑘 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞𝑘𝑘

𝑑𝑑𝑞̇𝑞𝑘𝑘

𝑑𝑑𝑑𝑑
�

𝐾𝐾

𝑘𝑘=1

=
𝑑𝑑
𝑑𝑑𝑑𝑑 �

� 𝑞̇𝑞𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞𝑘𝑘

𝐾𝐾

𝑘𝑘=1

� =
𝑑𝑑
𝑑𝑑𝑑𝑑 �

�𝑝𝑝𝑘𝑘𝑞̇𝑞𝑘𝑘
𝐾𝐾

𝑘𝑘=1

� 

(10). 

     We define Hamiltonian, a physical amount looking at the equation (10). Here p is 
generalized momentum. The concept of Hamiltonian was proposed by William Rowan 
Hamilton in his paper in 18344. 
 

𝐻𝐻(𝑞𝑞,𝑝𝑝) ≡� 𝑞̇𝑞𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞𝑘𝑘

𝐾𝐾

𝑘𝑘=1

− 𝐿𝐿 = �𝑝𝑝𝑘𝑘𝑞̇𝑞𝑘𝑘
𝐾𝐾

𝑘𝑘=1

− 𝐿𝐿 
(11) 

     As the relation H=2T-L=2T-(T-U)=T+U shows us, Hamiltonian equals to the total of 
kinetic energy and potential energy. In economics, Hamiltonian corresponds to the total 
utility of the nation, which is the sum of utility from consumption and the capital converted 
to utility. 
     Formally the total differential of Hamiltonian is like this; 
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 
(12). 

     On the other hand, the same dH can be expressed using the definition as follows; 
 

𝑑𝑑𝑑𝑑 = 𝑞̇𝑞𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑞̇𝑞 − 𝑑𝑑𝑑𝑑 = 𝑞̇𝑞𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑞̇𝑞 − �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞

𝑑𝑑𝑞̇𝑞 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑�

= 𝑞̇𝑞𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑞̇𝑞 − 𝑝̇𝑝𝑑𝑑𝑑𝑑 − 𝑝𝑝𝑝𝑝𝑞̇𝑞 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = 𝑞̇𝑞𝑑𝑑𝑑𝑑 − 𝑝̇𝑝𝑑𝑑𝑑𝑑 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 

(13). 

     Comparing the equations (12) and (13), we can obtain canonical equations (14). 
 𝑑𝑑𝑞𝑞𝑘𝑘

𝑑𝑑𝑑𝑑
=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝𝑘𝑘

,
𝑑𝑑𝑝𝑝𝑘𝑘

𝑑𝑑𝑑𝑑
=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑘𝑘

 
(14). 

 
4 Hamilton (1834). 
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     In addition to that, we can see the following relation. 
 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
(15) 

     The equation (15) tells that Hamiltonian is integral of motions in the system. 
     Using the definition of Hamiltonian, we can represent the action like this; 
 

𝑆𝑆 = � [𝑝𝑝𝑞̇𝑞 − 𝐻𝐻(𝑝𝑝, 𝑞𝑞)]𝑑𝑑𝑑𝑑
𝑡𝑡𝐵𝐵

𝑡𝑡𝐴𝐴
 

(16) 

     We shall take variations which are independent for p and q. 
 

𝛿𝛿𝛿𝛿 = � �𝛿𝛿𝛿𝛿𝑞̇𝑞 + 𝑝𝑝
𝑑𝑑
𝑑𝑑𝑑𝑑
𝛿𝛿𝛿𝛿 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝛿𝛿 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛿𝛿𝛿𝛿� 𝑑𝑑𝑑𝑑
𝑡𝑡𝐵𝐵

𝑡𝑡𝐴𝐴

= 𝑝𝑝𝑝𝑝𝑝𝑝|𝑡𝑡𝐴𝐴
𝑡𝑡𝐵𝐵 + � ��𝑞̇𝑞 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝛿𝛿𝛿𝛿 − �𝑝̇𝑝 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝛿𝛿𝛿𝛿� 𝑑𝑑𝑑𝑑

𝑡𝑡𝐵𝐵

𝑡𝑡𝐴𝐴
 

(17) 

     Supposing δS=0, we obtain canonical equations again. 
 

3. Principle of Least Action in Quantum Mechanics 

     Richard Phillips Feynman published a paper based on his doctoral thesis in 19485. He 
invented path integral as a new approach to quantum mechanics. In quantum mechanics, a 
particle like an electron takes not only one path but also any other paths that are possible from 
a to b. Every path can be recognized only by the probabilities attached to each paths. 
     The probability can be expressed using a weight φ[x(t)]. The action S[x(t)] corresponds 
to a path x(t). We assign a phase 2πS/h to each path. Here h is Planck constant. 
 

𝜑𝜑[𝑥𝑥(𝑡𝑡)] ∝ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖
𝑆𝑆[𝑥𝑥(𝑡𝑡)]
ℏ

� 
(18) 

     We also introduced the concept of probability amplitude K(b, a). 
 

𝐾𝐾(𝑏𝑏,𝑎𝑎) = � 𝜑𝜑[𝑥𝑥(𝑡𝑡)]
∀𝑥𝑥(𝑡𝑡)

 
(19) 

     The probability by which the particle moves from point a to point b is given as K(b, a) 
squared. 
 𝑃𝑃(𝑏𝑏,𝑎𝑎) = 𝐾𝐾(𝑏𝑏,𝑎𝑎)2 (20) 

     The principle of least action in classical physics is the limit case of path integral in 
quantum mechanics. This discovery gives us a philosophical interpretation of the principle of 
least action. In economics, economic agents intendedly optimize their behaviors. In this 

 
5 Feynman (1948). 
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meaning, it is natural that the principle of least action is held in an economic world. In 
comparison to that, it is very unnatural to suppose Nature optimizes its action. The 
formalization above instead shows us that Nature realizes every possible path just 
mechanically. As a result, the phases offset each other and only the classical trajectory remains. 
     Suppose the particle pass the point c on way from a to b, we can express probability 
amplitude like this; 
 

𝐾𝐾(𝑏𝑏,𝑎𝑎) = � 𝑑𝑑𝑥𝑥𝑐𝑐𝐾𝐾(𝑏𝑏, 𝑐𝑐)𝐾𝐾(𝑐𝑐,𝑎𝑎)
∞

−∞
 

(21). 

     Dividing the time interval from a to b into N parts, we repeat the same operation and 
obtain this equation (22). 
 

𝐾𝐾(𝑏𝑏,𝑎𝑎) = � 𝑑𝑑𝑥𝑥1
∞

−∞
⋯� 𝑑𝑑𝑥𝑥𝑁𝑁−1

∞

−∞
�𝐾𝐾(𝑛𝑛 + 1,𝑛𝑛)
𝑁𝑁−1

𝑛𝑛=0

 
(22) 

     We can approximate K(n+1,n) as follows; 
 

𝐾𝐾(𝑛𝑛 + 1,𝑛𝑛) =
1
𝐴𝐴

exp �
𝑖𝑖
ℏ
𝑆𝑆(𝑛𝑛 + 1,𝑛𝑛)�

≈
1
𝐴𝐴

exp �𝑖𝑖
∆𝑡𝑡
ℏ
𝐿𝐿(
𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛

∆𝑡𝑡
,
𝑥𝑥𝑛𝑛+1 + 𝑥𝑥𝑛𝑛

2
,
𝑡𝑡𝑛𝑛+1 + 𝑡𝑡𝑛𝑛

2
)� 

(23). 

     After all, probability amplitude results in the equation (24). 
 

𝐾𝐾(𝑏𝑏,𝑎𝑎) = lim
𝑁𝑁→∞

1
𝐴𝐴𝑁𝑁

� 𝑑𝑑𝑥𝑥1
∞

−∞
⋯� 𝑑𝑑𝑥𝑥𝑁𝑁−1

∞

−∞
𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑖𝑖
ℏ
� 𝑆𝑆(𝑛𝑛 + 1,𝑛𝑛)
𝑁𝑁−1

𝑛𝑛=0

� 
(24) 

     Here we represent t’=t+∆t and x’=x+∆x. Then we substitute ψ(x, t) into the equation 
(21) as K(x, t; x0, t0). 
 

𝜓𝜓(𝑥𝑥′, 𝑡𝑡′) = � 𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥′, 𝑡𝑡′; 𝑥𝑥, 𝑡𝑡)𝜓𝜓(𝑥𝑥, 𝑡𝑡)
∞

−∞
 

(25) 

     We substitute the equation (23) into the equation (25). 
 

𝜓𝜓(𝑥𝑥′, 𝑡𝑡 + ∆𝑡𝑡) ≈ � 𝑑𝑑𝑑𝑑
1
𝐴𝐴
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖

∆𝑡𝑡
ℏ
𝐿𝐿(
𝑥𝑥′ − 𝑥𝑥
∆𝑡𝑡

,
𝑥𝑥′ + 𝑥𝑥

2
, 𝑡𝑡 +

∆𝑡𝑡
2

)�𝜓𝜓(𝑥𝑥, 𝑡𝑡)
∞

−∞
 

(26) 

     When Lagrangian is of one dimension, the equation (27) follows. 
 

∆𝑡𝑡𝑡𝑡 �
𝑥𝑥′ − 𝑥𝑥
∆𝑡𝑡

,
𝑥𝑥′ + 𝑥𝑥

2
, 𝑡𝑡 +

∆𝑡𝑡
2
� =

𝑚𝑚(𝑥𝑥′ − 𝑥𝑥)2

2∆𝑡𝑡
− U�

𝑥𝑥′ + 𝑥𝑥
2

, 𝑡𝑡 +
∆𝑡𝑡
2
�∆𝑡𝑡 

(27) 

     Here we replace x’-x by ξ and represent x’ as x once again. Then we expand the equation 
(26) and remain the first-order term for ∆t. 
 

𝜓𝜓(𝑥𝑥, 𝑡𝑡 + ∆𝑡𝑡) = � 𝑑𝑑𝑑𝑑
1
𝐴𝐴
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖

𝑚𝑚𝜉𝜉2

2ℏ∆𝑡𝑡
− 𝑖𝑖

∆𝑡𝑡
ℏ
𝑈𝑈 �𝑥𝑥 +

𝜉𝜉
2

, 𝑡𝑡 +
∆𝑡𝑡
2
��𝜓𝜓(𝑥𝑥 − 𝜉𝜉, 𝑡𝑡)

∞

−∞
 

(28) 

     From the equation (28), we obtain the equation (29). 
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𝜓𝜓(𝑥𝑥, 𝑡𝑡) + ∆𝑡𝑡

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= � 𝑑𝑑𝑑𝑑
1
𝐴𝐴
𝑒𝑒
𝑖𝑖𝑖𝑖𝜉𝜉2
2ℏ∆𝑡𝑡 �1 − 𝑖𝑖

∆𝑡𝑡
ℏ
𝑈𝑈(𝑥𝑥, 𝑡𝑡)� �𝜓𝜓(𝑥𝑥, 𝑡𝑡) − 𝜉𝜉

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜉𝜉2

2
𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕2

�
∞

−∞
 

(29) 

     When we make ∆t→0 and ξ→0, both sides of the equation (29) must be ψ(x, t). Because 
of this, we obtain the equation (30). 
 

𝐴𝐴 = � 𝑑𝑑𝑑𝑑𝑒𝑒
𝑖𝑖𝑖𝑖𝜉𝜉2
2ℏ∆𝑡𝑡 = �2𝜋𝜋𝜋𝜋ℏ∆𝑡𝑡

𝑚𝑚

∞

−∞
 

(30) 

     Taking into account the equation (30) and the relations (31), we obtain the equation 
(32). 
 

� 𝑑𝑑𝑑𝑑
1
𝐴𝐴
𝜉𝜉𝜉𝜉

𝑖𝑖𝑖𝑖𝜉𝜉2
2ℏ∆𝑡𝑡 = 0,� 𝑑𝑑𝑑𝑑

1
𝐴𝐴
𝜉𝜉2𝑒𝑒

𝑖𝑖𝑖𝑖𝜉𝜉2
2ℏ∆𝑡𝑡 =

∞

−∞

∞

−∞

𝑖𝑖ℏ∆𝑡𝑡
𝑚𝑚

 
(31) 

 
 

𝜓𝜓 + ∆𝑡𝑡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜓𝜓 − 𝑖𝑖
∆𝑡𝑡
ℏ
𝑈𝑈(𝑥𝑥, 𝑡𝑡) +

𝑖𝑖ℏ∆𝑡𝑡
2𝑚𝑚

𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕2

 
(32) 

     The equation (32) results in the equation (33). 
 

𝑖𝑖ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �−
ℏ2

2𝑚𝑚
𝜕𝜕2

𝜕𝜕𝜕𝜕2
+ 𝑈𝑈(𝑥𝑥, 𝑡𝑡)� 𝜓𝜓 

(33) 

     The equation (33) is Schrödinger equation of wave function. This means that principle 
of least action forms the basis of quantum mechanics. 
 

4. Principle of Least Action in Real Business Cycle Model 

     In economics, the method of analytical mechanics had been introduced very naturally. 
The principle of least action is also easily explained from the optimizing behavior of 
households and firms. 
     Real business cycle models proposed a new view of economic fluctuation. In the models, 
the economy chooses a new path stochastically.6 
     Now we suppose a very simple economy. The production function is Cobb-Douglas type. 
 𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡𝐾𝐾𝑡𝑡𝑎𝑎, 0 < a < 1 (34) 

     Here Y, U and K are national income, total factor productivity and capital stock 
respectively. Labor supply is given and normalized as unity. Stochastic shock happens in the 
productivity. 
     Suppose the capital stock is wholly depreciated in one term, the equation Kt+1=It=St 
holds. 

 
6 Kydland=Prescott (1882). 
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     Consumers live for only two terms. The present value of utility for whole life is like this; 
 

u(𝐶𝐶𝑡𝑡,𝐶𝐶𝑡𝑡+1) = ln𝐶𝐶𝑡𝑡 +
𝐸𝐸[𝑙𝑙𝑙𝑙𝐶𝐶𝑡𝑡+1]

1 + 𝜃𝜃
 

(35). 

     Budget constraint of consumer is as follows; 
 

C𝑡𝑡 +
𝐶𝐶𝑡𝑡+𝑞𝑞
1 + 𝑟𝑟

= w𝑡𝑡 = (1 − 𝑎𝑎)𝑈𝑈𝑡𝑡𝐾𝐾𝑡𝑡𝑎𝑎 
(36). 

     When the consumer maximizes the present value of utility, the equation (37) follows. 
 

S𝑡𝑡 = K𝑡𝑡+1 =
𝑤𝑤𝑡𝑡

2 + 𝜃𝜃
=

(1 − 𝑎𝑎)𝑈𝑈𝑡𝑡𝐾𝐾𝑡𝑡𝑎𝑎

2 + 𝜃𝜃
 

(37) 

     The equation (37) results in the equation (38). 
 k𝑡𝑡+1 = 𝑏𝑏 + 𝑎𝑎𝑘𝑘𝑡𝑡 + 𝑢𝑢𝑡𝑡 (38) 

     Here kt=ln(Kt) , ut=ln(Ut) and b=(1-a)/(2+θ). 
     From the equation (34), the equation (39) follows. 
 y𝑡𝑡 = 𝑎𝑎𝑘𝑘𝑡𝑡 + 𝑢𝑢𝑡𝑡 (39) 

     From the equations (38) and (39), we obtain the equation (40). 
 y𝑡𝑡 = 𝑎𝑎𝑏𝑏 + 𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 (40) 

     When ut is white noise, the relations (41) are held. 
 𝐸𝐸(𝑢𝑢𝑡𝑡) = 0,𝐸𝐸(𝑢𝑢𝑡𝑡2) = 𝜎𝜎2,𝐸𝐸(𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡−𝑠𝑠) = 0 (41) 

     The economy follows the only path as in classical mechanics. 
     On the contrary to this, we suppose ut is random walk with drift g. In this case, 
production shock ut move the economy to a new path. This means that the economy has 
infinite number of possible paths as in quantum mechanics. 
 𝑢𝑢𝑡𝑡 = 𝑔𝑔 + 𝑢𝑢𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (42) 

     Here εt is white noise. 
 

5. Principle of Least Action in the General Theory of Relativity 

     In classical mechanics, space-time and objects do not interfere with each other. In the 
theory of relativity, however, objects or energy distort space-time and objects will move along 
distorted space-time.7 
     In the theory of relativity, an action can be divided into two parts. One represents 
distortion of space-time. The other comes from distribution of objects or energy. 
 

S = 𝑆𝑆𝑔𝑔 + 𝑆𝑆𝑚𝑚 = �ℒ𝑔𝑔�−𝑔𝑔𝑑𝑑4𝑥𝑥 + �ℒ𝑚𝑚 �−𝑔𝑔𝑑𝑑4𝑥𝑥 
(43) 

 
7 Einstein (1916). 
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     When £g=a+bR holds, the equation (44) follows. R is curvature scalar and g is the 
determinant of metric tensor gμν. 
 

δ𝑆𝑆𝑔𝑔 = 𝛿𝛿 �ℒ𝑔𝑔�−𝑔𝑔𝑑𝑑4𝑥𝑥 = 𝑎𝑎�𝛿𝛿(�−𝑔𝑔)𝑑𝑑4𝑥𝑥 + 𝑏𝑏�𝛿𝛿(𝑅𝑅�−𝑔𝑔)𝑑𝑑4𝑥𝑥 
(44) 

      Here we use the relations (45) and (46). 
 

𝛿𝛿�𝑎𝑎�−𝑔𝑔� = −
𝑎𝑎
2�

−𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 
(45) 

 𝛿𝛿�𝑅𝑅�−𝑔𝑔� = (𝛿𝛿𝛿𝛿)�−𝑔𝑔 + 𝑅𝑅𝑅𝑅��−𝑔𝑔�

= �−𝑔𝑔𝛿𝛿�𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅𝜇𝜇𝜇𝜇� −
𝑅𝑅
2 �

−𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇

= �−𝑔𝑔𝑅𝑅𝜇𝜇𝜇𝜇𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 + �−𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝛿𝛿𝛿𝛿𝜇𝜇𝜇𝜇 −
𝑅𝑅
2 �

−𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇

= �𝑅𝑅𝜇𝜇𝜇𝜇 −
𝑔𝑔𝜇𝜇𝜇𝜇

2
𝑅𝑅��−𝑔𝑔𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 + �−𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇𝛿𝛿𝛿𝛿𝜇𝜇𝜇𝜇 

(46) 

     Here gμν is inverse matrix of gμν and Rμν is Ricci tensor. 
     After some calculations, we obtain the equation (47) from the equation (44). 
 

δ𝑆𝑆𝑔𝑔 = 𝑎𝑎�(𝑎𝑎 + 𝑏𝑏𝑏𝑏)�−𝑔𝑔𝑑𝑑4𝑥𝑥

= ��−
𝑎𝑎
2
𝑔𝑔𝜇𝜇𝜇𝜇 + 𝑏𝑏 �𝑅𝑅𝜇𝜇𝜇𝜇 −

𝑔𝑔𝜇𝜇𝜇𝜇
2
𝑅𝑅���−𝑔𝑔𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 𝑑𝑑4𝑥𝑥

= �𝑏𝑏 �𝑅𝑅𝜇𝜇𝜇𝜇 −
𝑔𝑔𝜇𝜇𝜇𝜇

2
𝑅𝑅 −

𝑎𝑎
2𝑏𝑏

𝑔𝑔𝜇𝜇𝜇𝜇��−𝑔𝑔𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 𝑑𝑑4𝑥𝑥 

(44) 

     We call –a/2b cosmological constant and represent as Λ. 
     Next we move to the calculation of δSm. 
 

δ𝑆𝑆𝑚𝑚 = 𝛿𝛿 �ℒ𝑚𝑚 �−𝑔𝑔𝑑𝑑4𝑥𝑥 = ��
𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇

𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 +
𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇 ,𝛼𝛼

𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 ,𝛼𝛼� 𝑑𝑑
4𝑥𝑥

= �
𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇

𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 𝑑𝑑4𝑥𝑥 + �
𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇 ,𝛼𝛼

𝜕𝜕𝛼𝛼𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 ,𝛼𝛼 𝑑𝑑
4𝑥𝑥

= �
𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇

𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 𝑑𝑑4𝑥𝑥 + �𝜕𝜕𝛼𝛼 �
𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇 ,𝛼𝛼

� 𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 ,𝛼𝛼 𝑑𝑑
4𝑥𝑥

− �𝜕𝜕𝛼𝛼 �
𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇 ,𝛼𝛼

𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 ,𝛼𝛼� 𝑑𝑑
4𝑥𝑥

= ��
𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇

−
𝜕𝜕
𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇 ,𝛼𝛼

� 𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇𝑑𝑑4𝑥𝑥

= �−
�−𝑔𝑔

2
𝑇𝑇𝜇𝜇𝜇𝜇𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 𝑑𝑑4𝑥𝑥 

(45) 
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     Here Tμν is covariant tensor. 
 

𝑇𝑇𝜇𝜇𝜇𝜇 = −
2

�−𝑔𝑔
�
𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇

−
𝜕𝜕
𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕�ℒ�−𝑔𝑔�
𝜕𝜕𝑔𝑔𝜇𝜇𝜇𝜇 ,𝛼𝛼

� 
(46) 

     From these calculations, we obtain the equation (47). 
 

δS = 𝛿𝛿𝛿𝛿𝑔𝑔 + 𝛿𝛿𝑆𝑆𝑚𝑚 = �𝑏𝑏 �𝑅𝑅𝜇𝜇𝜇𝜇 −
𝑔𝑔𝜇𝜇𝜇𝜇

2
𝑅𝑅 −

𝑎𝑎
2𝑏𝑏

𝑔𝑔𝜇𝜇𝜇𝜇

−
1

2𝑏𝑏
𝑇𝑇𝜇𝜇𝜇𝜇��−𝑔𝑔𝛿𝛿𝑔𝑔𝜇𝜇𝜇𝜇 𝑑𝑑4𝑥𝑥 

(47) 

     Because δS=0, we obtain the equation (48) defining Λ≡-a/2b and κ≡1/2b. 
 

𝑅𝑅𝜇𝜇𝜇𝜇 −
𝑔𝑔𝜇𝜇𝜇𝜇

2
𝑅𝑅 + Λ𝑔𝑔𝜇𝜇𝜇𝜇 = 𝜅𝜅𝑇𝑇𝜇𝜇𝜇𝜇 

(48) 

     The equation (48) is Einstein equation. 
 

6. Principle of Least Action in Dynamic Stochastic General Equilibrium Model 

     In new Keynesian models, real economy and money interact with each other while 
money is neutral in neoclassical models. New Keynesian models consist from IS curve, Philips 
curve, Taylor rule, Fisher equation and rational expectations.8 
 𝑌𝑌𝑡𝑡 = 𝑌𝑌�𝑡𝑡 − 𝛼𝛼(𝑟𝑟𝑡𝑡 − 𝜌𝜌) + (𝑌𝑌𝑡𝑡+1𝑒𝑒 − 𝑌𝑌�𝑡𝑡+1) + 𝜀𝜀𝑡𝑡 (49) 
 𝜋𝜋𝑡𝑡 = 𝛽𝛽𝜋𝜋𝑡𝑡+1𝑒𝑒 + 𝜙𝜙(𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡+1) + 𝜐𝜐𝑡𝑡 (50) 
 𝑖𝑖𝑡𝑡 = 𝜋𝜋𝑡𝑡 + 𝜌𝜌 + 𝜃𝜃𝜋𝜋(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡∗) + 𝜃𝜃𝑌𝑌(𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡+1) + 𝜂𝜂𝑡𝑡 (51) 
 𝑟𝑟𝑡𝑡 = 𝑖𝑖𝑡𝑡 − 𝜋𝜋𝑡𝑡+1𝑒𝑒  (52) 
 𝜋𝜋𝑡𝑡+1𝑒𝑒 = 𝐸𝐸𝜋𝜋𝑡𝑡+1,𝑌𝑌𝑡𝑡+1𝑒𝑒 = 𝐸𝐸𝑌𝑌𝑡𝑡+1 (53) 

     From the equations (49), (51), (52) and (53), we obtain dynamic aggregate demand 
curve. 
 

𝑌𝑌𝑡𝑡 = 𝑌𝑌�𝑡𝑡 +
𝛼𝛼

1 + 𝛼𝛼𝜃𝜃𝑌𝑌
𝐸𝐸𝜋𝜋𝑡𝑡+1 −

𝛼𝛼(1 + 𝜃𝜃𝜋𝜋)
1 + 𝛼𝛼𝜃𝜃𝑌𝑌

𝜋𝜋𝑡𝑡 +
1

1 + 𝛼𝛼𝜃𝜃𝑌𝑌
(𝐸𝐸𝑌𝑌𝑡𝑡+1 − 𝑌𝑌�𝑡𝑡+1)

+
𝛼𝛼𝜃𝜃𝜋𝜋

1 + 𝛼𝛼𝜃𝜃𝑌𝑌
𝜋𝜋𝑡𝑡∗ +

1
1 + 𝛼𝛼𝜃𝜃𝑌𝑌

𝜀𝜀𝑡𝑡 +
𝛼𝛼

1 + 𝛼𝛼𝜃𝜃𝑌𝑌
𝜂𝜂𝑡𝑡 

(54) 

     We also obtain dynamic aggregate supply function from the equations (50) and (53). 
 𝜋𝜋𝑡𝑡 = 𝛽𝛽𝛽𝛽𝜋𝜋𝑡𝑡+1 + 𝜙𝜙(𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡+1) + 𝜐𝜐𝑡𝑡 (55) 

     From the equations (54) and (55), we obtain equilibrium values of national income and 
inflation rate. 

 
8 Blanchard=Kiyotaki (1987). 
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 𝑌𝑌𝑡𝑡 = 𝑌𝑌�𝑡𝑡 + (1 − 𝛽𝛽𝜌𝜌𝜀𝜀)𝜓𝜓𝜀𝜀𝜀𝜀𝑡𝑡 − 𝛼𝛼(1 + 𝜃𝜃𝜋𝜋 − 𝜌𝜌𝜐𝜐)𝜓𝜓𝜐𝜐𝜐𝜐𝑡𝑡 − 𝛼𝛼�1 + 𝛽𝛽𝜌𝜌𝜂𝜂�𝜓𝜓𝜂𝜂𝜂𝜂𝑡𝑡
+ (1 − 𝛽𝛽)𝜃𝜃𝜋𝜋𝜓𝜓𝜋𝜋∗𝜋𝜋𝑡𝑡∗ 

(56) 

 𝜋𝜋𝑡𝑡 = 𝜙𝜙𝜓𝜓𝜀𝜀𝜀𝜀𝑡𝑡 + (1 + 𝛼𝛼𝛼𝛼𝑌𝑌 − 𝜌𝜌𝜐𝜐)𝜓𝜓𝜐𝜐𝜐𝜐𝑡𝑡 − 𝛼𝛼𝛼𝛼𝜓𝜓𝜂𝜂𝜂𝜂𝑡𝑡 + 𝜙𝜙𝜃𝜃𝜋𝜋𝜓𝜓𝜋𝜋∗𝜋𝜋𝑡𝑡∗ (57) 
 

𝜓𝜓𝜀𝜀 =
1

[(1 + 𝛼𝛼𝛼𝛼𝑌𝑌 − 𝜌𝜌𝜀𝜀)(1 − 𝛽𝛽𝜌𝜌𝜀𝜀) + 𝛼𝛼𝛼𝛼(1 + 𝜃𝜃𝜋𝜋 − 𝜌𝜌𝜀𝜀)] 
(58) 

 
𝜓𝜓𝜐𝜐 =

1
[(1 + 𝛼𝛼𝛼𝛼𝑌𝑌 − 𝜌𝜌𝜐𝜐)(1 − 𝛽𝛽𝜌𝜌𝜐𝜐) + 𝛼𝛼𝛼𝛼(1 + 𝜃𝜃𝜋𝜋 − 𝜌𝜌𝜐𝜐)] 

(59) 

 
𝜓𝜓𝜂𝜂 =

1
��1 + 𝛼𝛼𝛼𝛼𝑌𝑌 − 𝜌𝜌𝜂𝜂��1 − 𝛽𝛽𝜌𝜌𝜂𝜂� + 𝛼𝛼𝛼𝛼�1 + 𝜃𝜃𝜋𝜋 − 𝜌𝜌𝜂𝜂��

 (60) 

 
𝜓𝜓𝜋𝜋∗ =

1
𝜙𝜙𝜃𝜃𝜋𝜋 + (1 − 𝛽𝛽)𝜃𝜃𝑌𝑌

 
(61) 

     Here ρε, ρυ and ρη are parameters expressing durability of demand shock, supply 
shock and monetary shock respectively. 
 

Conclusion 

     Frank Plumpton Ramsey published a paper on optimal growth theory. John Maynard 
Keynes, who was the editor of the journal at the time, proposed use of principle of variations 
to Ramsey. In fact, this was the first paper which paraphrased principle of least action 
explicitly in economics. 
     Several years later, Keynes published his monumental book. It is probably true that 
Keynes was very conscious of Einstein’s works when he wrote the sentences. After all, 
Keynes’s book treated an economy under the real effect from money while Einstein thought 
about the motion of point mass under the relativistic effects. 
     Stochastic disturbance of the economy came to play a substantial role in economic 
growth around 1980. The effects from shocks sustain long and move the growth path into a 
new one. This image is very akin to Feynman’s path integral, where a particle takes every 
possible path at the same time. 
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