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Abstract

In this paper, we apply the preplay negotiation procedure proposed by Kalai (1981) to the

n-person prisoners’ dilemma with n ≥ 3 and examine whether it generates cooperation.

We show that if the preplay is carried out at least once, the preplay game has a perfect

equilibrium point that realizes cooperation. We also show that if the preplay is excuted at

least twice, the game has a perfect equilibrium point that realizes cooperation regardless

of the entering action profile (the starting point of the preplays). Our results are a gener-

alization of Kalai’s (1981) that were obtained for the two-person prisoners’ dilemma.

JEL classification: C72; D62

Keywords: The n-person prisoners’ dilemma; Preplay negotiation; Perfect equilibrium point

1 Introduction

People often fail to cooperate when they seek individual benefit. This is exemplified by

environmental pollution, wasting of energy and/or resources, free-rider problems, etc. The

n-person prisoners’ dilemma is a strategic-form game that represents such conflict situa-

tions. In this game, players can choose either to cooperate or to defect, but they have a

strong motivation to defect because doing so is a dominant action.

There are many studies exploring the possibility of cooperation in this game. They

introduce a number of elements that are not captured in the game and examine whether
∗E-mail address: nishi@fukuoka-u.ac.jp
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cooperation is realized as a rational choice for players. Repetition of the game is one such

element. There are numerous studies in this field, and they show that cooperation is attain-

able when the game is repeated infinitely or finitely many times under various conditions

(Kreps et al. 1982, Neymann 1985, Fudenberg and Maskin 1986, Sekiguchi 1997, Ely and

Valimaki 2002, Bhaskar et al. 2006, etc.). Okada (1993) introduced an option to include an

enforcement agency for cooperation into the n-person prisoners’ dilemma. Varian (1994)

considered a compensation mechanism depending on the choices. Nishihara (1997, 1999 and

2008) introduced randomly ordered sequential choices and unobservability of cooperative

actions. They showed that cooperation can be realized under certain conditions.

This paper focuses on Kalai’s (1981) research. He proposed a preplay negotiation pro-

cedure that was carried out before the actual play of a game. The procedure consists of

simultaneous moves by all players and a given number of preplays. At the beginning, all

players choose actions simultaneously, which becomes the entering action profile of the first

preplay. In the second and subsequent preplays, the outcome of the previous preplay be-

comes the entering action profile. Each preplay is carried out as follows. First, all players

choose actions and if some players choose actions that differ from their entering actions,

then their choices are fixed and the other players can choose actions again. For the second

round of choices, if some players choose actions that differ from their entering actions, then

their choices are fixed and the rest of the players can choose actions again, and so on. The

preplay ends if all players’ actions are fixed, or all players who can make choices choose

the same actions as their entering actions. After the given number of preplays is finished,

players execute their actions in the outcome of the final preplay, which is the actual play

of the given game.

Kalai (1981) applied this procedure to the two-person prisoners’ dilemma. He showed

that if the preplay is carried out at least once, then the game has a perfect equilibrium point

(hereafter PEP) proposed by Selten (1975), in which both players’ actions are to cooperate

in the final outcome of the preplay(s). Furthermore, he showed that if the preplay is

executed twice or more, then the game has a PEP in which cooperation is realized in the
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final outcome regardless of which entering action profile is given first.

As Schelling (1978) pointed out, the n-person prisoners’ dilemma captures important

social-conflict situations, especially when n ≥ 3. However, to date, it has not been clarified

whether Kalai’s (1981) preplay negotiation procedure works well for the n-person prisoners’

dilemma with n ≥ 3. The purpose of this paper was to examine this point.

To generalize Kalai’s (1981) first result, we consider the following negotiation strategy.

In the determination of the first entering action profile, the player chooses to cooperate,

and in the preplay, she chooses to cooperate if and only if: (1) no player chose to defect

before, or (2) the preplay is not the last and the choices of the other n− 1 players are fixed

to cooperate. We show, as Theorem 1, that the combination of this negotiation strategy is

a PEP if the preplay is carried out at least once. In this equilibrium, all players’ actions

are to cooperate in the final outcome of the preplay(s).

To generalize Kalai’s (1981) second result, we consider another negotiation strategy.

In the determination of the first entering action, the player chooses the action that she

arbitrarily selected in advance. In the first preplay, the player chooses to cooperate if and

only if there is no player whose choice was fixed at the action to defect; in the later preplay,

the player follows the negotiation strategy stated above. We show, as Theorem 2, that if the

preplay is carried out at least twice, then the combination of this negotiation strategy is a

PEP in the subgame that starts after arbitrarily entering action profile. In this equilibrium,

all players’ actions are to cooperate in the final outcome. We also show, as Theorem 3, that

the combination of this negotiation strategy is a PEP. Thus, we generalize Kalai’s (1981)

results and verify that his procedure works well to resolve the n-person prisoners’ dilemma

for any n ≥ 2.

This paper is organized as follows. In the next section, we formulate the n-person

prisoners’ dilemma and Kalai’s (1981) preplay negotiation procedure. In Section 3, we

show the difficulty of using the same analytical procedure as Kalai (1981) in the three

or more-person case. In Section 4, we discuss the main results. In the final section, we

conclude. All proofs are given in the appendix.
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2 The Model

In this section, we formulate the n-person prisoners’ dilemma and the preplay negotiation

procedure proposed by Kalai (1981).

2.1 The n-person Prisoners’ Dilemma

The n-person prisoners’ dilemma is a strategic-form game < N, {C,D}, (fi)i∈N >, where

N = {1, 2, ..., n} (n ≥ 2) is the set of players; {C,D} is each player’s action set with the

interpretation that C is to cooperate and D is to defect ; fi : {C,D}×{0, 1, ..., n−1} → R is

player i’s payoff function. Here, fi(a,m) represents player i’s von Neumann-Morgenstern

utility when the player chooses a ∈ {C,D} and m players other than i choose C. We

assume the following A1 through A3 for all i ∈ N .

A1: fi(D,m) > fi(C,m) for any m ∈ {0, 1, ..., n − 1}.

A2: fi(C, n − 1) > fi(D, 0).

A3: fi(a, m) is increasing in m for each a ∈ {C,D}.

Assumption A1 states that player i will be better off if she chooses D rather than C

regardless of the other players’ choices. A2 means that if all players choose D, then the

situation will be worse for player i compared with the situation in which they choose C.

A3 implies that, regardless of her action, player i’s payoff becomes greater as the number

of players selecting C increases.

From A1, D strongly dominates C for all the players; however, if they choose D, then,

by A2, such a situation is worse than the case in which all players choose C. Hence,

the players face a ”dilemma”. This game is thought to represent various social-conflict

situations.

We use the following terminology and notations. We call a combination of actions of

all the players an action profile. For any I ⊆ N , A(I) denotes the set of all the action

combinations of the players I. For any I ⊆ N , any a ∈ A(I) and any i ∈ I, ai denotes player
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i’s action in a. For any I ⊆ N , any a ∈ A(I) and any J ⊆ I, aJ denotes the combination of

the actions of the players J in a. For any two disjoint sets of players I and I ′, and for any

a ∈ A(I) and a′ ∈ A(I ′), a + a′ denotes the concatenation of a and a′, i.e., (a + a′)I = a

and (a + a′)I′ = a′. For any I ⊆ N , C(I) (resp. D(I)) denotes an action combination such

that ai = C (resp. ai = D) for all i ∈ I. Therefore, C(I) + D(N − I) is an action profile in

which players in I choose C and the other players choose D. When there is no possibility of

confusion, we use the notation C(I) as an abbreviation for C(I)+D(N − I). For example,

we say that an action profile is C(I) to indicate that it is C(I) + D(N − I). Finally, for

any action profile a, any I ⊆ N and any b ∈ {C,D}, we define Iab = {i ∈ I : ai = b}. That

is, Iab is the set of the players in I who choose b in a.

2.2 Kalai’s Preplay Negotiation Procedure

Kalai (1981) proposed the following preplay negotiation procedure. Before the negotiation

begins a positive integer k, which represents the number of preplays, is given and publicly

announced. At the beginning of the procedure, all players choose actions simultaneously.

After this move, players carry out a preplay k times. In each preplay, an action profile,

which we call the entering action profile, is given and announced at the beginning. We

describe the procedure of a preplay later. When a preplay is finished, an action profile,

which we call the outcome of the preplay, is determined. In the first preplay, the entering

action profile is the result of the first simultaneous moves. In the later preplays, the entering

action profile is the outcome of the previous preplay. When k preplays are finished, the

players must execute the actions of the final outcome as the play of the given strategic-form

game, which is the n-person prisoners’ dilemma in this paper.

In this paper, we formulate the preplay proposed by Kalai (1981) by states and their

transition rule. A state is a pair (a, I) in which a ∈ A(N) and I ⊆ N . The first state

is (e,N), where e is the entering action profile. At each state (a, I), the players in I

simultaneously choose actions. Their choices a′ ∈ A(I) are announced to all the players.
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The state transition rule is the following.

R1: If aI = a′ or if ai ̸= a′
i for all i ∈ I, then the state transition ends and the outcome

of this preplay is aN−I + a′.

R2: Otherwise, the state proceeds to the next one (aN−I + a′, I ′), where I ′ = {i ∈ I :

ai = a′
i}.

Regarding this procedure, Kalai (1981) makes two points. First, this is formalized as a

modified version of the real procedure of housing trades in the USA. Second, this procedure

has the following two advantages: (1) it is simple; and (2) the players obtain the least payoff

in the original strategic-form game, which induces them to participate in this procedure.

Let Γk be the extensive form game which represents this situation. Information sets are

defined as follows. For any l ≤ k, we call s = (a0
v0

; a1
1, a

1
2, ..., a

1
v1

; a2
1, a

2
2, ..., a

2
v2

; ...; am
1 , am

2 , ...,

am
vm

) an action sequence if ap
q ∈ A(I) for any p ∈ {0, 1, 2, ...,m}, any q ∈ {1, 2, 3, ..., vp} and

some I ⊆ N . We say s is possible if there is a sequence of states t = ((b1
1, I

1
1 ), (b1

2, I
1
2 ), ....,

(b1
v1

, I1
v1

); (b2
1, I

2
1 ), ..., (b2

v2
, I2

v2
); ....; (bm

1 , Im
1 ), ..., (bm

vm
, Im

vm
)) which satisfies the following con-

ditions: (1) a0
v0

= b1
1 ∈ A(N); (2) ap

q ∈ A(Ip
q ) for any p and q; (3) for any p ≤ m − 1,

(bp
vp

, Ip
vp

) and ap
vp

satisfy the ending rule R1 as a state and action choices, bp+1
1 is the out-

come stated in R1, and Ip+1
1 = N ; (4) for any p and any q ≤ vp − 1, (bp

q , I
p
q ) and ap

q do not

satisfy R1 as a state and action choices, and (bp
q+1, I

p
q+1) is the next state stated in R2; (5)

if m = k, then (bm
vm

, Im
vm

) and am
vm

do not satisfy R1.

These conditions mean that s and t can occur as a sequence of choices and a sequence

of states, and that the preplay negotiation procedure continues after s. Precisely, the

condition (1) means that a0
v0

is possible choices in the first simultaneous moves and that

it is the entering action profile of the first preplay. The condition (2) means that ap
q is

possible choices in the moves of (ap
q , I

p
q ). The condition (3) implies that, if p ≤ m − 1, the

pth preplay ends at the state (bp
vp

, Ip
vp

), and the (p + 1)th preplay begins with the state

(bp+1
1 , Ip+1

1 ). The condition (4) means that if q ≤ vq − 1, pth preplay does not ends at

(bp
q , I

p
q ) and (bp

q+1, I
p
q+1) is the next state. The condition (5) implies that, if m = k, the

state transition does not end at (bm
vm

, Im
vm

). Let (a(s), I(s)) be the state next to (bm
vm

, Im
vm

)
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when am
vm

is chosen. Namely, if (bm
vm

, Im
vm

) and am
vm

satisfy R1, then a(s) is the outcome

stated in R1, and I(s) = N ; otherwise, (a(s), I(s)) is the next state indicated by R2.

Every player knows what actions have been chosen when she makes a choice during

her move of a state. Hence, for each player i ∈ I(s), the set of decision nodes in the

move of (a(s), I(s)) is her information set when an action sequence s is realized. Let Pi(s)

be this information set. For each i ∈ N , define Si as the set of all the possible action

sequence s satisfying i ∈ I(s). Let P 0
i be the set of player i’s decision nodes at which she

chooses an action in the first simultaneous moves. The collection of player i’s information

sets is defined as Pi = {P 0
i } ∪ {Pi(s) : s ∈ Si}. For any l ≤ k, let Sl

i be the set of

possible action sequence s such that (a(s), I(s)) is in the lth preplay and i ∈ I(s). Define

P l
i = {Pi(s) : s ∈ Sl

i}. This is the collection of player i’s information sets which she reaches

in the lth preplay.

For any l ≤ k and any P ∈ P l
i , there is a unique s ∈ Sl

i such that P = Pi(s), and for

this s, there is a unique state (a(s), I(s)) in the lth preplay. Let (a(P ), I(P )) denote this

state. Namely, player i’s choice at P is the choice during the move of (a(P ), I(P )) in the

lth preplay. We assume that the entire structure of Γk is common knowledge among the

players.

We call a mapping from Pi to {C,D} player i’s negotiation strategy. We call a mapping

from Pi − {P 0
i } to {C,D} player i’s preplay strategy. For any e ∈ A(N), let Γk(e) be the

subgame of Γk that begins from the moves of the first preplay with the entering action

profile e.

Let ϵ1, ϵ2, ϵ3, ... be a sequence of positive real numbers that converge to zero. We define

a perturbation of Γk using ϵz (z = 1, 2, 3, ...) later. When a perturbation is given, we define

the perturbed game of Γk.

When we evaluate players’ expected payoffs in a perturbed game, we use Landau symbols

O(ϵx
z ) and o(ϵx

z ). As an additional symbol, we define O+(ϵx
z ) as some function g(ϵz), which

satisfies limz→∞
g(ϵz)

ϵx
z

= h for some h > 0.
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3 Backward Elimination of Weakly Dominated Actions

Kalai (1981) investigated Γ1 and Γk(e) (k ≥ 2) for the two-person case. For Γ1, he showed

that there is a PEP that realizes (C,C) as the final outcome. For Γk(e) (k ≥ 2), he showed

that for any e ∈ A({1, 2}), there is a PEP that realizes (C,C) as the final outcome.

He analyzed these games by backwardly eliminating weakly dominated actions. This is

done for Γ1 as follows. For any state (a, {i}), D is better than (hence, weakly dominates)

C, hence C is eliminated. For any state (a, {1, 2}) for players 1 and 2, one action weakly

dominates the other, hence the dominated action is eliminated. In the first simultaneous

moves, C weakly dominates D for players 1 and 2, hence C is left to both players to choose.

We call this procedure backward elimination of weakly dominated actions (abbreviated

BEWDA).1

BEWDA is an excellent analytical procedure to find a PEP. However, in the case of

three or more people, we cannot proceed in some states. To illustrate this, let us investigate

Γ1 using BEWDA for the following three-person case: fi(C,m) = 2m; fi(D,m) = 2m + 1

for i = 1, 2, 3 and m = 0, 1, 2.

For any state (a, {i}), D weakly dominates C for player i, hence C is eliminated. Con-

sider the state (a, {1, 2}). When a = (C,C, a3), the final outcome is (C,C) if players 1 and

2 choose C; otherwise, it is (D,D). Therefore, C weakly dominates D for both players and

D is eliminated. The same holds for any state (a, I) in which I = {i, j} and ai = aj = C.

When a = (C,D, a3), the correspondence of the choices of players 1 and 2 to the final

outcome (hereafter, the choice-outcome correspondence) is shown in Figure 1. In this

figure, D weakly dominates C for Player 1, and D strongly (hence, weakly) dominates C

for Player 2. Hence, C is eliminated for both players. When they choose D, the final

outcome is (D,D, a3). The same holds for any state (a, I) in which I = {i, j} and ai ̸= aj .

When a = (D,D, a3), the choice-outcome correspondence of players 1 and 2 is shown

in Figure 2. This indicates that D strongly dominates C for both players. Hence, C is

eliminated for both. When they choose D, the final outcome is (D,D, a3). The same holds

1We use this terminology following Huang et al. (2014).
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Player 2

C D

Player C (D,C, a3) (C,D, a3)

D (D,C, a3) (D,D, a3)

Figure 1: The choice-outcome correspondence in ((C,D, a3), {1, 2}).

for any state in which I = {i, j} and ai = aj = D.

Player 2

C D

Player C (C,C, a3) (C,D, a3)

D (D,C, a3) (D,D, a3)

Figure 2: The choice-outcome correspondence in ((D,D, a3), {1, 2}).

Consider state ((C,C,C), {1, 2, 3}). From the above analysis, the choice-outcome cor-

respondence of players 1, 2 and 3 is shown in Figure 3. In this figure, there is no weak

dominance for any player. For Player 1, D is better than C if players 2 and 3 choose C,

but C is better than D if players 2 and 3 choose C and D, respectively. The same holds

for the other players.

Player 3: C Player 3: D

Player 2 Player 2

C D C D

Player 1 C (C,C,C) (C,D,C) Player 1 C (C,C,D) (D,D,D)

D (D,C,C) (D,D,D) D (D,D,D) (D,D,D)

Figure 3: The choice-outcome correspondence in ((C,C,C), {1, 2, 3}).

This example illustrates that BEWDA does not necessarily work well for the analysis

of Γ1 in the three or more-person case. Moreover, it seems that in such a case, Γ1 has no

PEP, whereby cooperation is realized. Such a conclusion, however, is premature. Although

BEWDA is a superior procedure, it does not derive all PEPs. We can see this in the

analysis of the following perturbed game.

Consider the following perturbation: for any state (a, I), if IaC = {i}, then we put

probability ϵz on the branch C of player i’s move. On any other branch, we use a probability

9



of ϵ4z. Under this perturbation, in ((C,C,D), {1, 2}), players 1 and 2 have a payoff matrix,

as shown in Figure 4.

Player 2

C D

Player 1 C 4 + o(ϵ3z), 4 + o(ϵ3z) 1 − O+(ϵz), 1 + o(ϵ3z)

D 1 + o(ϵ3z), 1 − O+(ϵz) 1 + o(ϵ3z), 1 + o(ϵ3z)

Figure 4: The payoff matrix in ((C,C,D), {1, 2}) under perturbation.

When players 1 and 2 choose C and D, respectively, Player 1 gets the expected payoff

1−O+(ϵz) for the following reason. In this case, the next state is ((C,D,D), {1}) with the

probability that converges to 1 when z → ∞. Player 1 will choose D in this state, because

by doing so she can obtain a greater expected payoff than by choosing C. Hence, the final

outcome is (D,D,D) with a probability that converges to 1 when z → ∞. However, during

the move of ((C,D,D), {1}), C is realized with probability ϵz and the outcome is (C,D,D).

Any other outcome has a probability of at most ϵ4z. Hence, Player 1’s expected payoff is

f1(D, 0) + ϵz{f1(C, 0) − f1(D, 0)} + o(ϵ3z) = 1 − O+(ϵz). Similarly, Player 2’s expected

payoff is 1 − O+(ϵz) if Player 1 and 2 choose D and C, respectively.

Figure 4 shows two Nash equilibria: (C,C) and (D,D), if z is sufficiently large. We

have a similar argument for each state (a, {i, j}), such that ai = aj = C and sN−{i,j} = D.

Suppose that the equilibrium (D,D) is selected in these states. In state ((C,C,C), {1, 2, 3}),

players’ choice-outcome correspondences are shown in Figure 5. This figure shows the final

outcomes that occur with a probability that converges to 1 when z → ∞.

Player 3: C Player 3: D

Player 2 Player 2

C D C D

Player 1 C (C,C,C) (D,D,D) Player 1 C (D,D,D) (D,D,D)

D (D,D,D) (D,D,D) D (D,D,D) (D,D,D)

Figure 5: The choice-outcome correspondence in ((C,C,C), {1, 2, 3}) under perturbation.

Figure 5 indicates that the choice combination (C,C,C) is a Nash equilibrium if z is

sufficiently large. Investigating Nash equilibria for other states, we show that there is a

10



PEP that realizes cooperation. In the next section, we develop this analysis.

4 Main Results

We consider the following preplay strategy.

Definition 1. For each i ∈ N , define τi : Pi − {P 0
i } → {C,D} as follows: when P ∈ Pk

i

or |I(P )| ≥ 2, τi(P ) = C iff (a(P ), I(P )) = (C(N), N) ; when P ∈ P l
i for some l ≤ k − 1

and I(P ) = {i}, τi(P ) = C iff a(P )N−{i} = C(N − {i})

In this definition, the condition (a(P ), I(P )) = (C(N), N) means that D was not chosen

before P , including the first simultaneous moves. Note that I ̸= N holds for (C(N), I) only

if the players in N − I changed their actions from their entering actions D to C. Hence,

roughly speaking, this preplay strategy assigns D when D is chosen before. The only

exception is the case in which P ∈ P l
i (l ≤ k−1), I(P ) = {i} and a(P )N−{i} = C(N−{i}),

i.e., player i can realize C(N) only by her choice before the final preplay. Ignoring this case

as an exception, we can say that τi is a ”trigger”-like strategy.

We define perturbation η1
z for z = 1, 2, 3, ... using ϵz. In the first simultaneous moves,

we put ϵ4k
z on each branch. For any state (a, I) of the lth preplay and any i ∈ I, we put

perturbation probabilities on the branches of player i’s move at (a, I) as follows: (1) If

I ̸= N and IaC = {i}, then we put ϵz on C; (2) If l ≥ 2, I = N , ai = C, and |IaC | ≥ 2,

then we put ϵ2z on C; (3) If l ≥ 2, I = N , and IaC = {i}, then we put ϵ3z on C; (4) We

put ϵ4k
z on any other branch. For any e ∈ A(N) and any z = 1, 2, 3..., let Γk

z(e) be the

perturbed game defined from Γk(e) and η1
z . Using Γk

1(e), Γk
2(e), Γk

3(e), ... as a test sequence,

we obtain the following proposition.

Proposition 1. For any k ≥ 1 and any e ∈ A(N), (τ1, ..., τn) is a PEP of Γk(e).

When the players use (τ1, ..., τn), the final outcome is C(N) if e = C(N), otherwise it

is C(ϕ). We define Cτi as player i’s negotiation strategy such that she chooses C during

the first simultaneous moves and makes action choices by τi later. For z = 1, 2, 3..., let Γk
z

11



be the perturbed game defined from Γk and η1
z . Using Γk

1 , Γk
2 ,Γk

3 , ... as a test sequence, we

have the next theorem from Proposition 1. The proof is straightforward.

Theorem 1. For any k ≥ 1, (Cτ1, ..., Cτn) is a PEP of Γk.

If Cτ1, ..., Cτn are used in Γk, the final outcome is C(N). Hence, this theorem shows that

cooperation is achieved by a PEP if preplay is done at least once. This is an n-person

version of Kalai’s (1981) result for the single-preplay game.

The main feature of the perturbation η1
z is that players have inertia for choosing C.

This inertia exists in the move of the first state of the second and subsequent preplays. It

also exists in the move of the second and later states (a, I) in every preplay if the player

is the only person whose action is C in aI . The inertia decreases the expected payoff of

each player i ∈ IaC if she chooses C, not following τi, when |IaC | ≥ 2. If there is no

perturbation, C and D are equivalent. The same outcome occurs; hence, there is the same

payoff, because even if the player chooses C, she can change that selection in the next

move. In the perturbed game Γk
z , however, C is realized with a probability of ϵz during

the next move against the player’s will if she chooses C alone during the previous move.

This decreases her expected payoff based on Assumption A1 if the preplay is the final one.

If the preplay is not final, the choice C will still have a relatively large probability in later

preplays, until the final preplay. Thus, choosing D is better than choosing C. We do not

have to create any inertia of D for each player i ∈ IaD because there is no case that τi

assigns C.

The inertia of C in the first state is given by the smaller probability ϵ2z when there are

two or more players whose entering action is C. This is the case for the following reason.

Let the probability be ϵx
z . Consider Player 1’s choice to be the first move of the final preplay

when the entering action profile is C({1, 3}). Now the value of τ1 is D. Regardless of her

choice, the final outcome is C(ϕ), with a probability that converges to 1 when z → ∞. If

Player 1 chooses C, then the final outcome is C({1}) with a probability of O+(ϵz) because

of the inertia of C in their next move. This factor decreases Player 1’s expected payoff.

At the same time, however, the final outcome is C({1, 3}) with a probability of O+(ϵx
z ),
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because of the inertia of C in Player 3’s move. This factor increases Player 1’s expected

payoff if f1(C, 1) > f1(D, 0). Thus, to ensure that D is better than C for Player 1, we have

to make x > 1. The reason for the probability of ϵ3z is more technical (see Footnote 2 in

the appendix).

Next, we examine the PEP for k ≥ 2 in the following preplay strategy.

Definition 2. For any i ∈ N , we define σi : Pi − {P 0
i } → {C,D} as follows: when

P ∈ P1
i , σi(P ) = C iff a(P )N−I(P ) = C(N − I(P )); when P ∈ P l

i for some l ≥ 2,

σi(P ) = τi(P ).

The interpretation of σi in the first preplay is that player i chooses to cooperate if all

players’ cooperation is possible. The condition a(P )N−I(P ) = C(N − I(P )) means that if

all players in I(P ) choose C, then cooperation is realized.

For any e ∈ A(N), we define perturbation ηe
z for z = 1, 2, 3, ... using ϵz, as follows. In

the first simultaneous moves, we put ϵ4k
z on each branch. In the first preplay, for any state

(a, I) and any player i ∈ I, we put perturbation probabilities on player i’s move, as follows:

(1) if I = N and ai ̸= ei, then we assign ϵz on D; (2) if I ̸= N and i is the only player

whose action is ai in aI , we put ϵz on branch ai and ϵ4k
z on any other branch. In later

preplays, the perturbation probabilities are the same as η1
z .

For z = 1, 2, 3..., let Γke
z be the perturbed game defined from Γk and ηe

z . For any

e′ ∈ A(N), let Γke
z (e′) be the perturbed game, which is defined based on Γk(e′) and ηe

z . For

the next theorem, we fix ê ∈ A(N) arbitrarily and use Γkê
1 (e), Γkê

2 (e), Γkê
3 (e), ... as a test

sequence for a given e.

Theorem 2. For any k ≥ 2 and any e ∈ A(N), (σ1, ...., σn) is a PEP of Γk(e).

This theorem shows that cooperation is realized by a PEP whatever entering action

profile is given first. It implies that even if the first entering action profile is determined

exogeneously, cooperation can be achieved. Kalai (1981) demonstrated this property for

the two-person prisoners’ dilemma. Theorem 2 is a generalization of Kalai’s result to n ≥ 3.

In ηe
z , players have inertia not only on C but also on D in the first preplay. The reason
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is similar to that explaining the inertia on C in η1
z . Suppose that σi assigns C for player

i ∈ IaD. When |IaD| ≥ 2, even if the player chooses D, she has a chance to change it for C

in the next move. To make choosing C preferable to choosing D, we add inertia on D in

the player’s move in the next state.

Finally, we study the PEP of Γk. Define aσi : Pi → {C,D} as player i’s negotiation

strategy, which assigns a ∈ {C,D} at the first simultaneous moves and the same choices as

σi in the subsequent move. We can show the next theorem using Γke
1 , Γke

2 , Γke
3 , ... as a test

sequence.

Theorem 3. For any k ≥ 2 and any e ∈ A(N), (e1σ1, ...., enσn) is a PEP of Γk.

From Theorem 2, it appears that whatever choice is assigned in the first simultaneous

moves, if players use σ1, ..., σn in the subsequent move; the combination of such a negotia-

tion strategy will be a PEP of Γk. Theorem 3 shows that this is true. In this theorem, we

assume that player i arbitrarily selects ei when determining the negotiation strategy. ηe
z

(z = 1, 2, 3, ...) is then constructed from e = (e1, ..., en).

Although ei is selected arbitrarily by player i, that choice must be better than choosing

b ̸= ei at the first simultaneous moves for (e1σ1, ...., enσn) to be a PEP. For this purpose,

we make the perturbation probability of D large in player i’s move in the first state (a,N)

in which ai ̸= ei. If the player chooses ai ̸= ei at the first simultaneous moves, then D will

be realized with a probability of ϵz during the player’s move in the first state, so that the

outcome of the first preplay to be C(ϕ) with a non-negligible probability.

5 Conclusion

In this paper, we examined whether the n-person prisoners’ dilemma with n ≥ 3 is resolved

as the outcome of a PEP via the preplay negotiation procedure proposed by Kalai (1981).

We showed that if the preplay is executed at least once, then there is a PEP in which all

players choose to cooperate in the final outcome. We also showed that if the preplay is

executed at least twice, then there is a PEP in which all players choose to cooperate in the
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final outcome regardless of which entering action profile is given first. We conclude that

Kalai’s (1981) procedure resolves the n-person prisoners’ dilemma for any n ≥ 2.
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Appendix: Lemmas and Proofs

We define additional notations before providing the following lemmas and proofs. When

the players’ preplay strategies of the lth and subsequent preplays are given, for any W ⊆ N ,

we define El
iz(W ) as player i’s expected payoff in Γk

z when C(W ) is the entering action

profile of the lth preplay. For convenience of the notation, we define Ek+1
iz (W ) as player i’s

payoff when C(W ) is the final outcome. Further, for the terms in the expression of El
iz(W ),

we use the simplified notation E(W ) as El+1
iz (W ).

We show four lemmas. The first lemma provides the expression of El
iz(W ), and the

other three evaluate the differences in El
iz(W ) for various entering action profiles.

Lemma A1. If players use preplay strategies (τ1, ..., τn) in Γk
z , then for any l = 2, 3, 4, ..., k,

any i ∈ N and any W ⊂ N , we have

El
iz(W ) = E(ϕ) + p1

W

∑
j∈W

{E({j}) − E(ϕ)} + p2
W {E(W ) − E(ϕ)} + o(ϵ4k−1

z ),

where p1
W = ϵ3z(1−ϵ2z)

|W |−1(1−ϵ4k
z )2(n−|W |) if |W | ≥ 2, p1

W = |W |ϵ3z(1−ϵ4k
z )n−1 if |W | ≤ 1,

p2
W = ϵ

2|W |
z (1 − ϵ4k

z )n−|W | if |W | ≥ 2, and p2
W = 0 if |W | ≤ 1.

Proof. When W = ϕ, the equality is obvious. When W = {j}, C({j}) is the outcome

of the lth preplay if C is realized during player j’s first move, while D is realized during
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the other players’ moves. Its probability is p1
W . The outcomes other than C(ϕ) or C({j})

occur with a probability of at most O+(ϵ4k
z ), hence o(ϵ4k−1

z ). Therefore, we obtain the

desired equality. Suppose that |W | ≥ 2. When C(W ) is the entering action profile, the

outcome of the lth preplay is C(ϕ) w.p.1 z → ∞. because W ⊂ N . For any j ∈ W , the

outcome is C({j}) if C is realized twice during player j’s moves, while D is realized during

the other players’ moves. Its probability is p1
W . There are other cases in which C is realized

three times or more during player j’s move, while the other players in W gradually choose

D, and C({j}) finally becomes the outcome of this preplay. They occur with probability

o(ϵ4k−1
z ). The outcome is C(W ) if C is realized during the moves of all players in W , while

D is realized during the other players’ moves. Its probability is p2
W . For any other U ⊂ W ,

the outcome is C(U) with probability o(ϵ4k−1
z ). Hence, we have the equality stated in the

lemma. ¤

Lemma A2. If players use preplay strategies (τ1, ..., τn) in Γk
z , then for any l = 2, 3, 4, ..., k,

any i ∈ N , and any two subsets W and W ′ of N − {i} such that |W | > |W ′|, it holds that

El
iz(W ) − El

iz(W
′) = O+(ϵ3(k−l+1)

z ).

Proof. Let w = |W | and w′ = |W ′|. Lemma A1 provides the expression of El
iz(W ). Note

that for any j and j′ ∈ N − {i}, we have E({j}) = E({j′}). Hence, we have

El
iz(W ) = E(ϕ) + wp1

W {E({j}) − E(ϕ)} + p2
W {E(W ) − E(ϕ)} + o(ϵ4k−1

z ),

where j is an arbitrary player in N − {i}. We have the similar expression for El
iz(W

′).

Therefore, we have

El
iz(W ) − El

iz(W
′) = {wp1

W − w′p1
W ′}{E({j}) − E(ϕ)} + p2

W {E(W ) − E(ϕ)}

−p2
W ′{E(W ′) − E(ϕ)} + o(ϵ4k−1

z ).

First, consider the case that w′ = 0. We have

El
iz(W ) − El

iz(W
′) = wp1

W {E({j}) − E(ϕ)} + p2
W {E(W ) − E(ϕ)} + o(ϵ4k−1

z ).

We have p1
W = O+(ϵ3z), p2

W ≤ O+(ϵ4z) and Ek+1
iz (M)−Ek+1

iz (ϕ) = fi(D, |M |)− fi(D, 0) for
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any M ⊆ N − {i}. Hence, we can obtain the desired equality by mathematical induction:

for l = k, the equality holds; if the equality holds for l = l′, then it holds for l = l′ − 1.

Next, consider the case where w′ = 1. In this case, w ≥ 2. We have

El
iz(W ) − El

iz(W
′) = (wp1

W − p1
W ′){E({j}) − E(ϕ)} + p2

W {E(W ) − E(ϕ)} + o(ϵ4k−1
z ).

Here, p1
W = ϵ3z + o(ϵ4z) and p1

W ′ = ϵ3z + o(ϵ4k−1
z ).2 Hence, wp1

W − p2
W ′ = O+(ϵ3z). Since

p2
W = O+(ϵ2w

z ), we have

El
iz(W ) − El

iz(W
′) = O+(ϵ3z){E({j}) − E(ϕ)} + O+(ϵ2w

z ){E(W ) − E(ϕ)} + o(ϵ4k−1
z ).

We obtain the desired equality from the above result for W ′ = ϕ. Finally, consider the case

that w′ ≥ 2. We have wp1
W − w′p1

W ′ = O+(ϵ3z). Further, p2
W and p2

W ′ are O+(ϵ2w
z ) and

O+(ϵ2w′

z ), respectively. Hence, we have

El
iz(W ) − El

iz(W
′) = O+(ϵ3z){E({j}) − E(ϕ)} + O+(ϵ2w

z ){E(W ) − E(ϕ)}

−O+(ϵ2w′

z ){E(W ′) − E(ϕ)} + o(ϵ4k−1
z ).

We obtain the desired equality from the above result for W ′ = ϕ. ¤

Lemma A3. If players use preplay strategies (τ1, ..., τn) in Γk
z , then for any l = 2, 3, 4, ..., k,

any i ∈ N , and any W ⊂ N − {i}, it holds that El
iz(W ) − El

iz(W ∪ {i}) = O+(ϵ3(k−l+1)
z ).

Proof. Let |W | = w and let Wi = W ∪{i}. First, consider the case W = ϕ. By Lemma A1,

we have El
iz(ϕ) = E(ϕ)+o(ϵ4k−1

z ) and El
iz({i}) = E(ϕ)+O+(ϵ3z){E({i})−E(ϕ)}+o(ϵ4k−1

z ).

Hence, we have El
iz(ϕ) − El

iz({i}) = O+(ϵ3z){E(ϕ) − E({i})} + o(ϵ4k−1
z ). We can obtain

the desired equality by mathematical induction. Next, consider the case W = {j}. From

Lemma A1 we have

El
iz(W ) = E(ϕ) + p1

W {E({j}) − E(ϕ)} + o(ϵ4k−1
z ),

El
iz(Wi) = E(ϕ) + p1

Wi
{E({j}) − E(ϕ)} + p1

Wi
{E({i}) − E(ϕ)}

+p2
Wi

{E({i, j}) − E(ϕ)} + o(ϵ4k−1
z ).

2We have this expression of p1
W ′ because the perturbation probability is ϵ3z on the branch C. If it is ϵ2z ,

then El
iz(W ) − El

iz(W ′) < 0 for sufficiently large z.
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Since E({i, j}) − E(ϕ) = E({i, j}) − E({j}) + E({j}) − E(ϕ), we have

El
iz(W ) − El

iz(Wi) = (p1
W − p1

Wi
− p2

Wi
){E({j}) − E(ϕ)} + p1

Wi
{E(ϕ) − E({i})}

−p2
Wi

{E({i, j}) − E({j}} + o(ϵ4k−1
z ).

We can easily verify that p1
W − p1

Wi
= O+(ϵ5z). Hence, p1

W − p1
Wi

− p2
Wi

= −O+(ϵ4z) because

p2
Wi

= O+(ϵ4z). Since p1
Wi

= O+(ϵ3z), we have

El
iz(W ) − El

iz(Wi) = −O+(ϵ4z){E({j}) − E(ϕ)} + O+(ϵ3z){E(ϕ) − E({i})}

−O+(ϵ4z){E({j}) − E({i, j})} + o(ϵ4k−1
z ).

Hence, from the above result for W = ϕ and Lemma A2, we have

El
iz(W ) − El

iz(Wi) = O+(ϵ3(k−l+1)
z ) − O+(ϵ4z){E({j}) − E({i, j})} + o(ϵ4k−1

z ).

We can obtain the desired equality by mathematical induction. Finally, consider the case

w ≥ 2. From Lemma A1 we have

El
iz(W ) = E(ϕ) + p1

W

∑
j∈W

{E({j}) − E(ϕ)} + p2
W {E(W ) − E(ϕ)} + o(ϵ4k−1

z ),

and the same one with Wi instead of W . Here, p1
W = g(ϵz)(1−ϵ4k

z )2 and p1
Wi

= g(ϵz)(1−ϵ2z),

where g(ϵz) = ϵ3z(1 − ϵ2z)
w−1(1 − ϵ4k

z )2(n−w−1). Hence, p1
W − p1

Wi
= O+(ϵ5z). Further,

p2
W = O+(ϵ2w

z ) and p2
Wi

= O+(ϵ2(w+1)
z ). Hence, we have

El
iz(W ) − El

iz(Wi)

= O+(ϵ5z)
∑
j∈W

{E({j}) − E(ϕ)} + O+(ϵ3z){E(ϕ) − E({i})}

+O+(ϵ2w
z ){E(W ) − E(ϕ)} − O+(ϵ2(w+1)

z ){E(Wi) − E(ϕ)} + o(ϵ4k−1
z ).

We have E(Wi) − E(ϕ) = {E(Wi) − E(W )} + {E(W ) − E(ϕ)}. By the above result for

W = ϕ and Lemma A2, we have

El
iz(W ) − El

iz(Wi) = O+(ϵ3(k−l)+3
z ) + O+(ϵ2(w+1)

z ){E(W ) − E(Wi)} + o(ϵ4k−1
z ).

We can obtain the desired equality by mathematical induction. ¤

Lemma A4. If players use preplay strategies (τ1, ..., τn) in Γk
z , then for any l = 2, 3, 4, ..., k,

any i, j ∈ N (i ̸= j) and any W ⊂ N −{i, j}, it holds that El
iz(W ∪{i, j})−El

iz(W ∪{i}) =

o(ϵ3(k−l+1)−1
z ).
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Proof. We have El
iz(W ∪ {i, j}) − El

iz(W ∪ {i}) = {El
iz(W ∪ {i, j}) − El

iz(W ∪ {j})} +

{El
iz(W ∪ {j}) − El

iz(W )} + {El
iz(W ) − El

iz(W ∪ {i})}. By Lemma A2 and A3, all the

differences in the braces are O(ϵ3(k−l+1)
z ). Since one is negative and two are positive, the

term ϵ
3(k−l−1)
z may vanish. Hence, we obtain the desired equality. ¤

In the following, we prove Proposition 1, Theorem 2 and 3. In the proofs, it is often

necessary to state ”with a probability that converges to 1 when z → ∞” about the occur-

rence of outcomes of preplays. We describe ”w.p.1 z → ∞” as an abbreviation for it.

Proof of Proposition 1. We show that (τ1, ..., τn) is a subgame perfect equilibrium

of Γk
z(e) if z is sufficiently large. To demonstrate this, it suffices to show that for any

l = 1, 2, 3, ..., k, any i ∈ N and any P ∈ P l
i , player i obtains a more expected payoff by

choosing τi(P ) than by choosing b ̸= τi(P ) in P if z is sufficiently large, when every player

j ∈ I(P ) − {i} chooses τj(P ′) in the information set P ′ ∈ P l
j such that (a(P ′), I(P ′)) =

(a(P ), I(P )), and when all players make choices by (τ1, ..., τn) for all information sets after

(a(P ), I(P )). Let (a(P ), I(P )) = (a, I). To make the statements shorter, we say that a

is better than b for player i, indicating that player i obtains a more expected payoff by

choosing an action a than by choosing an action b. We consider the following four cases.

(1) The case that I = {i}.

If l = k, then, based on Assumption A1, D = τi(P ) is better than C for player i for any z.

Assume l ≤ k − 1. Consider the case aN−{i} = C(N − {i}). If player i chooses C = τi(P ),

then the final outcome is C(N) w.p.1 z → ∞. If player i chooses D, then the final outcome

is C(ϕ) w.p.1 z → ∞. Hence, based on Assumption A2, C is better than D for player i

if z is sufficiently large. Consider the case aN−{i} ̸= C(N − {i}). Let W = (N − {i})aC .

If player i chooses D = τi(P ), then the outcome of this preplay is C(W ) w.p.1 z → ∞.

If player i chooses C, then the outcome of this preplay is C(W ∪ {i}) w.p.1 z → ∞. By

Lemma A3, El+1
iz (W )−El+1

iz (W ∪ {i}) = O+(ϵ3(k−l)
z ), hence C is better than D for player

i if z is sufficiently large.
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(2) The case where (a, I) = (C(N), N).

If player i ∈ N chooses C = τi(P ), then the final outcome is C(N) w.p.1 z → ∞. If player

i chooses D, then the final outcome is C(ϕ) w.p.1 z → ∞. Hence, based on Assumption

A2, C is better than D for player i if z is sufficiently large.

(3) The case that a ̸= C(N) and I = N .

Consider the case l = 1. If player i ∈ IaD chooses D = τi(P ), then the outcome of the

first preplay is C(ϕ) w.p.1 z → ∞. Any other outcome occurs with probability o(ϵ4k−1
z ). If

player i chooses C, then the outcome is C({i}) w.p.1 z → ∞. Any other outcome occurs

with probability o(ϵ4k−1
z ). Hence, by Lemma A3, D is better than C for player i if z is

sufficiently large. If player i ∈ IaC chooses D = τi(P ), then the outcome of the first preplay

is C(ϕ) w.p.1 z → ∞. Any other outcome occurs with a probability of o(ϵ4k−1
z ). Assume

|IaC | = 1. If player i chooses C, then the outcome of the first preplay is C({i}) w.p.1

z → ∞. Any other outcome occurs with a probability of o(ϵ4k−1
z ). Hence, by Lemma A3,

D is better than C for player i if z is sufficiently large. Assume |IaC | ≥ 2. If player i chooses

C, then the outcome of the first preplay is C(ϕ) w.p.1 z → ∞. However, the outcome is

C({i}) with a probability of O+(ϵz). This occurs when C is realized twice during player

i’s move, while D is realized during the other players’ moves. Any other outcome occurs

with probability of o(ϵ4k−1
z ). Hence, by Lemma A3, D is better than C for player i.

Consider the case l ≥ 2. Let IaC = W . If player i ∈ N chooses D = τi(P ), then it is the

case that all players make choices by (τ1, ..., τn) during the first move of the lth preplay.

Hence, player i’s expected payoff ED1 is equal to El
iz(W ). In its expression, which is given

in Lemma A1, E({j}) − E(ϕ) and E(W ) − E(ϕ) are positive by Lemma A2. Hence, we

have ED1 ≥ E(ϕ) + o(ϵ4k−1
z ). Suppose that player i ∈ IaD chooses C. Then the outcome

of the lth preplay is C({i}) w.p.1 z → ∞. Hence, if l = k, then D is better than C based

on Assumption A1. Assume l ≤ k − 1. For each j ∈ W , let pj be the probability that

the outcome of the lth preplay is C({i, j}). For any j, j′ ∈ W , we have pj = pj′ . For any

j ∈ W , we have pj = O+(ϵ3z) if |W | ≥ 2 and pj = O+(ϵ4z) if |W | = 1. Because C({i, j})

occurs when C is realized twice during player j’s moves while the other players choose
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D, and any other state transition through which C({i, j}) realizes occurs with probability

o(ϵ4k−1
z ). Any other outcome occurs with probability o(ϵ4k−1

z ). Hence, player i’s expected

payoff is

EC1 = E({i}) +
∑
j∈W

pj{E({i, j}) − E({i})} + o(ϵ4k−1
z )

= E({i}) + o(ϵ3(k−l)+2
z ).

We have the second equality by Lemma A4. Since E(ϕ) − E({i}) = O+(ϵ3(k−l)
z ) based on

Lemma A3, we have ED1 > EC1 if z is sufficiently large.

Suppose that player i ∈ IaC = W chooses C. If W = {i}, then the outcome of the lth

preplay is C({i}) w.p.1 z → ∞. Any other outcome occurs with a probability of o(ϵ4k−1
z ).

Hence, player i’s expected payoff is E({i}) + o(ϵ4k−1
z ). Therefore, based on Lemma A3, D

is better than C for player i if z is sufficiently large. If |W | ≥ 2, then the outcome of the

lth preplay is C(ϕ) w.p.1 t → ∞. The outcome is C({i}) with a probability of O+(ϵz),

which is the probability that C is realized during the move of player i in the next state.

The outcome is C(W ) with a probability of O+(ϵ2(|W |−1)
z ), which is the probability that C

is realized during all the moves of the players in W − {i}. Any other outcome occurs with

a probability of o(ϵ4k−1
z ). Hence, player i’s expected payoff is

EC2 = E(ϕ) + O+(ϵz){E({i}) − E(ϕ)} + O+(ϵ2(|W |−1)
z ){E(W ) − E(ϕ)} + o(ϵ4k−1

z ).

By Lemmas A2 and A3, we have EC2 = E(ϕ)−O+(ϵ3(k−l)+1
z ). Hence, we have ED1 > EC2

if z is sufficiently large.

(4) The case that a ̸= C(N) and 2 ≤ |I| ≤ n − 1.

Let W = (N − I)aC . We consider the following two sub-cases.

(4-1) The case that |IaC | = 1.

Let IaC = {j}. Suppose that player i ∈ IaD chooses D = τi(P ). The outcome of the lth

preplay is C(W ) w.p.1 z → ∞. The outcome is C(W ∪ {j}) with a probability of O+(ϵz).

Any other outcome occurs with a probability of o(ϵ4k−1
z ). Hence, player i’s expected payoff

is

ED2 = E(W ) + O+(ϵz){E(W ∪ {j}) − E(W )} + o(ϵ4k−1
z ) ≥ E(W ).
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We have the last inequality from Lemma A2. Suppose that player i chooses C. Then the

outcome of the lth preplay is C(W ∪{i}) w.p.1 z → ∞. If l = k, then based on Assumption

A1, D is better than C for player i if z is sufficiently large. Assume l ≤ k−1. The outcome

is C(W ∪{i, j}) with a probability of O+(ϵz). This is the probability that C is realized once

during player i’s move and twice during player j’s move, while players in IaD − {i} choose

D. Any other outcome occurs with a probability of o(ϵ4k−1
z ). Hence, player i’s expected

payoff is

EC3 = E(W ∪ {i}) + O+(ϵz){E(W ∪ {i, j}) − E(W ∪ {i})} + o(ϵ4k−1
z )

= E(W ∪ {i}) + O(ϵ3(k−l)+1
z ). .

We have the last equality from Lemma A4. Since E(W )−E(W ∪{i}) = O+(ϵ3(k−l)
z ) based

on Lemma A3, we have ED2 > EC3 if z is sufficiently large.

Let us examine the choice of player i ∈ IaC . Now, IaC = {i}. Suppose that player i

chooses D = τi(a, I). The outcome of the lth preplay is then C(W ) w.p.1 z → ∞. The

outcome is C(W ∪ {i}) with a probability of O+(ϵz). Any other outcome occurs with a

probability of o(ϵ4k−1
z ). Suppose that player i chooses C. The outcome of the lth preplay

is C(W ∪ {i}) w.p.1 z → ∞, and any other outcome occurs with a probability of o(ϵ4k−1
z ).

Hence, according to Lemma A3, D is better than C for player i if z is sufficiently large.

(4-2) The case that |IaC | ≥ 2.

Suppose that player i ∈ IaD chooses D = τi(P ). The outcome of the lth preplay is C(W )

w.p.1 z → ∞. Any other outcome occurs with a probability of o(ϵ4k−1
z ). Suppose that

player i chooses C. The outcome of the lth preplay is C(W ∪{i}) w.p.1 z → ∞. Any other

outcome occurs with a probability of o(ϵ4k−1
z ). If l = k, based on Assumption A1, D is

better than C for player i if z is sufficiently large. If l ≤ k − 1, based on Lemma A3, D is

better than C for player i if z is sufficiently large.

Suppose that player i ∈ IaC chooses D = τi(P ). The outcome of the lth preplay is then

C(W ) w.p.1 z → ∞. Any other outcome occurs with a probability of o(ϵ4k−1
z ). Suppose

that player i chooses C. The outcome of the lth preplay is C(W ) w.p.1 z → ∞. The

outcome is C(W ∪ {i}) with a probability of O+(ϵz). This happens when C is realized
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during the move of player i twice, while D is realized during the other players’ moves.

It occurs through other state transitions, but their probabilities are o(ϵ4k−1
z ). Any other

outcome occurs with a probability of o(ϵ4k−1
z ). Based on Lemma A3, D is better than C

for player i if z is sufficiently large. ¤

Proof of Theorem 2. We show that (σ1, ..., σn) is a subgame perfect equilibrium of Γke
z (e′)

if z is sufficiently large. To demonstrate this, it suffices to show that for any l = 1, 2, 3, ..., k,

any i ∈ N and any P ∈ P l
i , player i obtains a more expected payoff by choosing σi(P )

than by choosing b ̸= σi(P ) in P if z is sufficiently large, when every player j ∈ I(P )−{i}

chooses σj(P ′) in the information set P ′ ∈ P l
j such that (a(P ′), I(P ′)) = (a(P ), I(P )), and

when all players make choices by (σ1, ..., σn) in all information sets after (a(P ), I(P )). From

Proposition 1, it is sufficient to show this proposition for l = 1. Let (a(P ), I(P )) = (a, I).

Similar to the above proof, we say that a is better than b for player i, indicating that player

i obtains a more expected payoff by choosing an action a than by choosing an action b. If

I(P ) = {i}, then the proof is the same as the proof of Proposition 1 in the case (1). Thus,

we consider the case |I(P )| ≥ 2.

(1) The case that (N − I)aD = ϕ.

If player i ∈ IaC chooses C = σi(P ), then the final outcome is C(N) w.p.1 z → ∞. If player

i chooses D, then the final outcome is C(ϕ) w.p.1 z → ∞. Hence, based on Assumption

A2, C is better than D for player i if z is sufficiently large.

If player i ∈ IaD chooses C = σi(P ), then the final outcome is C(N) w.p.1 z → ∞.

Any other outcome occurs in the first preplay with a probability of o(ϵ4k−1
z ). If player i

chooses D, then the outcomes are as follows. When IaD = {i}, the outcome of the first

preplay is C(N − {i}), so the final outcome is C(ϕ) w.p.1 z → ∞. Based on Assumption

A2, C is better than D for player i if z is sufficiently large. When IaD ≥ 2, the outcome of

the first preplay is C(N) w.p.1 z → ∞. The outcome is C(N − {i}) with a probability of

O+(ϵz). Hence, with this probability, the final outcome is C(ϕ). Any other outcome occurs

in the first preplay with a probability of o(ϵ4k−1
z ). Therefore, based on Assumption A2, C
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is better than D for player i if z is sufficiently large.

(2) The case where (N − I)aD ̸= ϕ.

Let W = (N − I)aC . If player i ∈ IaC chooses D = σi(P ), then the outcome of the first

preplay is C(W ) w.p.1 z → ∞. Any other outcome occurs with a probability of o(ϵ4k−1
z ).

If player i chooses C, then the outcome is as follows. When IaC = {i}, then the outcome

is C(W ∪ {i}) w.p.1 z → ∞. When |IaC | ≥ 2, the outcome of the first preplay is C(W )

w.p.1 z → ∞, but the outcome is C(W ∪ {i}) with a probability of O+(ϵz). This occurs

when C is realized during player i’s move twice, while D is realized during the moves of the

other players. It also occurs in other state transitions, but their probabilities are o(ϵ4k−1
z ).

Any other outcome occurs with a probability of o(ϵ4k−1
z ). Hence, based on Lemma A3, D

is better than C for player i if z is sufficiently large.

Suppose that player i ∈ IaD chooses D = σi(P ). The outcome of the first preplay is

then C(W ) w.p.1 z → ∞. If |IaC | ̸= 1, any other outcome occurs with a probability of

o(ϵ4k−1
z ). If IaC = {j}, then the outcome is C(W ∪ {j}) with a probability of O+(ϵz), and

any other outcome occurs with a probability of o(ϵ4k−1
z ). Hence, player i’s expected payoff

is ED = E2
iz(W ) + α + o(ϵ4k−1

z ), where α = O+(ϵz){E2
iz(W ∪ IaC) − E2

iz(W )} if |IaC | = 1,

and otherwise α = 0. Based on Lemma A2, we have α = O+(ϵ3(k−1)+1
z ) if |IaC | = 1.

Suppose that player i chooses C. Then, the outcome of the first preplay is C(W ∪ {i})

w.p.1 z → ∞. If |IaC | ≠ 1, any other outcome occurs with a probability of o(ϵ4k−1
z ).

If IaC = {j}, then the outcome of the first preplay is C(W ∪ {i, j}) with a probability

of O+(ϵ2z). This is the probability that C is realized twice during the moves of player j.

Any other outcome occurs with probability o(ϵ4k−1
z ). Hence, player i’s expected payoff is

EC = E2
iz(W ∪{i})+β+o(ϵ4k−1

z ), where β = O+(ϵ2z){E2
iz(W ∪IaC ∪{i})−E2

iz(W ∪{i})} if

|IaC | = 1, and β = 0 otherwise. By Lemma A4, we have β = O(ϵ3(k−1)+2
z ) when |IaC | = 1.

Hence, we have α = β = 0 or α > β if z is sufficiently large. By Lemma A3, we have

E2
iz(W ) − E2

iz(W ∪ {i}) = O+(ϵ3(k−1)
z ). Therefore, we have ED > EC if z is sufficiently

large. ¤
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Proof of Theorem 3. From Theorem 2, it is sufficient to show that for any i ∈ N , player

i obtains a more expected payoff in Γke
z by choosing ei than by choosing b ̸= ei at P 0

i if z

is sufficiently large, when every player j ∈ N − {i} chooses ej at P 0
j , and all players make

choices by (σ1, ..., σn) in all information sets in the preplays. If player i chooses ei, then

the outcome of the first preplay is C(N), so the outcome of the final preplay is C(N) w.p.1

z → ∞. Any other outcome occurs in the first preplay with a probability of o(ϵ4k−1
z ). If

player i chooses b ̸= ei, the outcome of the first preplay is C(N) w.p.1 z → ∞. Hence,

the outcome of the final preplay is similar. However, the outcome of the first preplay is

C(N − {i}) with a probability of O+(ϵz) if e = C(N) or C(ϕ), and is otherwise O+(ϵ2z).

Here, O+(ϵz) is the probability that D is realized during the move of player i while C is

realized during the other players’ moves, and O+(ϵ2z) is the probability that D is realized

twice during the move of player i while C is realized during the other players’ moves once

or twice. With these probabilities, the final outcome is C(ϕ). Any other final outcome

occurs with a probability of o(ϵ4k−1
z ). Therefore, based on Assumption A2, player i obtains

a more expected payoff by choosing ei than by choosing b ̸= ei if z is sufficiently large. ¤
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